Inverse problems on low-dimensional manifolds

نویسندگان

چکیده

Abstract We consider abstract inverse problems between infinite-dimensional Banach spaces. These are typically nonlinear and ill-posed, making the inversion with limited noisy measurements a delicate process. In this work, we assume that unknown belongs to finite-dimensional manifold: assumption arises in many real-world scenarios where natural objects have low intrinsic dimension belong certain submanifold of much larger ambient space. prove uniqueness Hölder Lipschitz stability results general setting, also case when only finite discretization is available. Then, Landweber-type reconstruction algorithm from number proposed, for which global convergence, thanks new criterion finding suitable initial guess. then applied several examples, including two classical ill-posed boundary value problems. The first Calderón’s conductivity problem, estimate piece-wise constant conductivities discontinuities on an triangle. A similar result obtained Gel’fand-Calderón’s problem Schrödinger equation, potentials non-intersecting balls.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low dimensional flat manifolds with some classes of Finsler metric

Flat Riemannian manifolds are (up to isometry) quotient spaces of the Euclidean space R^n over a Bieberbach group and there are an exact classification of of them in 2 and 3 dimensions. In this paper, two classes of flat Finslerian manifolds are stuided and classified in dimensions 2 and 3.

متن کامل

Alternating Projections on Low-dimensional Manifolds

Let B0 be a point in some space, which in the applications we have in mind could be a signal or image. We consider sequences (Bk) ∞ k=0 of points obtained by projecting back and forth between two manifolds M1 and M2, and give conditions guaranteeing that the sequence converge to a limit B∞ ∈ M1 ∩M2. Our motivation is the study of algorithms based on finding the limit of such sequences, which ha...

متن کامل

Pin Structures on Low–dimensional Manifolds

Pin structures on vector bundles are the natural generalization of Spin structures to the case of nonoriented bundles. Spin(n) is the central Z/2Z extension (or double cover) of SO(n) and Pin−(n) and Pin(n) are two different central extensions of O(n), although they are topologically the same. The obstruction to putting a Spin structure on a bundle ξ (= R → E → B) is w2(ξ) H(B;Z/2Z); for Pin it...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Low-dimensional Homogeneous Einstein Manifolds

A closed Riemannian manifold (Mn, g) is called Einstein if the Ricci tensor of g is a multiple of itself; that is, ric(g) = λ · g. This equation, called the Einstein equation, is a complicated system of second order partial differential equations, and at the present time no general existence results for Einstein metrics are known. However, there are results for many interesting classes of Einst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 2022

ISSN: ['0951-7715', '1361-6544']

DOI: https://doi.org/10.1088/1361-6544/aca73d